Как проверить импульсный блок питания через лампочку?
Ремонт импульсных блоков питания
Если вы ремонтировали ИБП, то вы наверняка сталкивались с такой ситуацией: все неисправные элементы заменены, оставшиеся вроде бы проверены, а включаете телевизор и… бац… и все надо начинать сначала! В радиотехнике чудес не бывает и, если что-то не работает, то на это есть причина! Наша задача – найти ее!
ИБП – самый ненадежный узел в современных радиоустройствах. Оно и понятно – огромные токи, большие напряжения – ведь через ИБП проходит вся мощность, потребляемая устройством. При этом не будем забывать, что величина мощности, отдаваемая ИБП в нагрузку, может изменяться в десятки раз, что не может благотворно влиять на его работу.
Большинство производителей применяют простые схемы ИБП. Оно и понятно. Наличие нескольких уровней защиты способно часто лишь усложнить ремонт и практически не влияют на надежность, так как повышение надежности за счет дополнительной петли защиты компенсируется ненадежностью дополнительных элементов, а нам при ремонте приходится долго разбираться, что это за детали и зачем они нужны. Конечно, каждый ИБП имеет свои характеристики, отличающиеся мощностью, отдаваемой в нагрузку, стабильностью выходных напряжений, диапазоном рабочих сетевых напряжений и другими характеристиками, которые при ремонте играют роль, только когда нужно выбрать замену отсутствующей детали.
Понятно, что при ремонте желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех ИБП практически одинаков, отличие только в схемных решениях и типах применяемых деталей.
Я пользуюсь методикой, выработанной многолетним опытом ремонта. Вернее, это не методика, а набор обязательных действий при ремонте, проверенных практикой.
Предложенная методика предполагает, что вы хоть немного знакомы с работой телевизора. Для ремонта необходим тестер (авометр) и, желательно, но необязательно, осциллограф.
Итак, ремонтируем блок питания.
Вам принесли телевизор или испортился свой.
Включаете телевизор, убеждаетесь, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в ИБП. На всякий случай надо будет проверить напряжение питания строчной развертки.
Выключаете телевизор, разбираете его.
Внешний осмотр платы телевизора, особенно участка, где размещен ИБП. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и др.
Надо будет в дальнейшем проверить их.
Внимательно просмотрите пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.
Проверьте цепь питания: прозвоните шнур питания, предохранитель, выключатель питания – если он есть, дроссели в цепи питания, выпрямительный мост.
Часто при неисправном ИБП предохранитель не сгорает – просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.
Недолго проверить остальные детали блока – диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.
Надо посмотреть, нет ли замыканий во вторичных цепях питания – для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.
Выполнив все проверки и заменив неисправные детали, можно выполнить проверку под током. Для этого вместо сетевого предохранителя подключаем лампочку 150-200 Ватт 220 Вольт. Это нужно для того, чтоб лампочка защитила ИБП в случае, если неисправность не устранена. Отключите размагничивающее устройство.
Включаем.Возможны три варианта:
- Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку – для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150-160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим, в некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть), или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.
- Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что ИБП не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280-300 Вольт. Если его нет – иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено – может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.
- Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните – чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.
На 95% неисправности укладываются в данную схему, однако встречаются более сложные неисправности, когда приходится поломать голову. Для таких случаев методики не напишешь и инструкцию не создашь.
Диагностирование и ремонт импульсного блока питания
Ремонт импульсного блока питания
Большинство современной бытовой электронной аппаратуры имеет в своей конструкции самостоятельные или расположенные на отдельной плате электронные модули понижающие и выпрямляющие сетевое напряжение.
Причин здесь несколько, но основными из них являются:
- колебания сетевого напряжения, на которые не рассчитаны эти понижающе-выпрямительные устройства;
- несоблюдение правил эксплуатации;
- подключение нагрузки, на которую не рассчитаны приборы.
Конечно бывает очень обидно, когда необходимо выполнить срочную работу, а модуль питания у компьютера неисправен или во время просмотра любимой телепередачи это устройство выходит из строя.
Не стоит сразу впадать в панику и обращаться в ремонтную мастерскую или спешить в супермаркет электроники за приобретением нового блока. Часто причины неработоспособности настолько тривиальны, что устранить их можно дома, с минимальными затратами финансовых средств и нервов.
Общее описание бытового импульсного питающего устройства
Конечно для того чтобы попытаться не только отремонтировать импульсный блок питания, но и определить его неисправность необходимо иметь базовые знания по электронике и обладать определенными электротехническими навыками.
В составе любого источника питания, будь то встроенный, как в телевизоре или установленный в виде отдельного устройства, как в настольном компьютере, имеются два функциональных блока – высоковольтный и низковольтный.
В высоковольтном боке, сетевое напряжение преобразуется диодным мостом в постоянное, и сглаживается на конденсаторе до уровня 300,0…310,0 вольт. Постоянное, высокое напряжение преобразуется в импульсное, частотой 10,0…100,0 килогерц, что позволяет отказаться от массивных низкочастотных понижающих трансформаторов, заменив их малогабаритными импульсными.
В низковольтном блоке импульсное напряжение понижается до необходимого уровня, выпрямляется, стабилизируется и сглаживается. На выходе этого блока присутствует одно или несколько напряжений, необходимых для питания бытовой техники. Кроме того, в низковольтном блоке смонтированы различные управляющие схемы, позволяющие повысить надежность устройства и обеспечить стабильность выходных параметров.
Визуально, на реальной плате, различить высоковольтную и низковольтную часть достаточно просто. К первой подходят сетевые провода, а от второй отходят питающие.
Импульсный стабилизатор в блоке питания на транзисторах
Диагностирование и простейший ремонт
Человеку, собирающему попытаться отремонтировать блок питания бытовой электронной техники надо быть заранее готовым к тому, что не всякое питающее устройство можно отремонтировать. Сегодня некоторые производители, выпускают электронику, блоки которой подлежат не ремонту, а комплектной замене.
Ни один мастер не возьмется за ремонт такого блока питания, ибо изначально он предназначен для полного демонтажа старого устройства с заменой на новое. Часто подобные электронные приборы просто залиты каким-либо компаундом, что сразу снимает вопрос о его ремонтопригодности.
Как показывает статистика, основные неисправности блока питания вызваны:
- неисправностью высоковольтной части (40,0%), которые выражаются пробоем (перегоранием) диодного моста и выходом из строя фильтрующего конденсатора;
- пробоем силового полевого или биполярного транзистора (30,0%), формирующего высокочастотные импульсы и находящегося в высоковольтной части;
- пробоем диодного моста (15,0%) в низковольтной части;
- пробоем (выгоранием) обмоток дросселя выходного фильтра.
В остальных случаях диагностирование достаточно сложно и без специальных приборов (осциллограф, цифровой вольтметр) выполнить его не удастся. Поэтому если неисправность блока питания вызвана не четырьмя вышеупомянутыми основными причинами, не стоит заниматься его домашним ремонтом, а сразу вызвать мастера для замены или приобретать новое питающее устройство.
Неисправности высоковольтной части достаточно просто обнаружить. Они диагностируются перегоранием предохранителя и отсутствием напряжения после него. Третий и четвертый случай можно предположить если предохранитель исправен, напряжение на входе низковольтного блока присутствует, а входное отсутствует.
Желательно проверку производить одновременно всех деталей. При выгорании нескольких электронных элементов при замене одного из них на исправный он может выгореть повторно из-за комплексной неисправности, которая не была устранена.
После замены деталей необходимо установить новый предохранитель и включить блок питания. Как правило после этого блок питания начинает работать.
Если предохранитель не перегорел, а напряжение на выходе блока питания отсутствует, то причина неисправности в пробое выпрямительных диодов низковольтной части, перегорании дросселя или выходе электролитических конденсаторов вторичного выпрямительного блока.
Неисправность конденсаторов диагностируется при их вздутии или вытекании из их корпуса жидкости. Диоды необходимо выпаять и проверить тестером аналогично проверке высоковольтной части. Целостность дроссельной обмотки проверяется тестером. Все неисправные детали необходимо заменить.
Если не удается найти нужный дроссель, то некоторые «умельцы» перематывают сгоревший, подобрав провод подходящего диаметра и определив количество витков. Такая работа довольно кропотлива и обычно выполняется только для уникальных блоков питания, найти аналог, которым затруднительно.
Ремонт стандартных устройств
Как уже говорилось, большинство блоков питания современных компьютеров и телевизоров построено по типовой схеме. Они отличаются типоразмерами используемых электронных деталей и выходной мощностью. Методика диагностирования и устранения неполадок для этих устройств идентичны.
Однако качественный ремонт требует соответствующего инструмента, в номенклатуру которого входят:
- паяльник (желательно с регулируемой мощностью);
- припой, флюс, спирт или очищенный бензин («Галоша);
- приспособление для удаление расплавленного припоя (оловоотсос);
- набор отверток;
- бокорезы (кусачки);
- бытовой мультиметр (тестер)
- пинцет;
- лампа накаливания на 100,0 ватт (используется в качестве балластной нагрузки).
В принципе простые телевизоры можно ремонтировать без схемы, однако главной сложностью ремонта некоторых моделей является то, что питающее устройство вырабатывает весь спектр напряжений – включая высоковольтное, используемое для развертки кинескопа. Блоки питания бытовых компьютеров выполнены по однотипной схеме. Рассмотрим отдельно методику определения неисправности и ремонта телевизора и десктопа.
Ремонт телевизора
О неисправности телевизионного модуля питания прежде всего свидетельствует отсутствие свечение диода «спящего» режима. Первыми ремонтными операциями являются:
- проверка на целостность (отсутствие обрыва) питающего шнура напряжения;
- разборка телевизионного приемника и освобождение электронной платы;
- осмотр платы блока питания, на наличие внешне неисправных деталей (вздувшихся конденсаторов, пригоревших мест на печатной плате, лопнувших корпусов, обугленной поверхности резисторов);
- проверка мест пайки, при этом особое внимание уделяется пропайке контактов импульсного трансформатора.
Если визуально установить дефектную деталь не удалось, то необходимо последовательно проверить работоспособность предохранителя, диодов, электролитических конденсаторов и транзисторов. К сожалению, если вышли из строя управляющие микросхемы, установить их неисправность можно только косвенным способом – когда при полностью исправных дискретных элементах работоспособное состояние блока питания не наступает.
Наиболее частыми причинами неработоспособности телевизионных блоков является:
- обрыв балластных сопротивлений;
- неработоспособность (короткое замыкание) Высоковольтного фильтрующий конденсатор;
- неисправность конденсаторов фильтров вторичного напряжения;
- пробой или перегорание выпрямительных диодов.
Проверку всех этих деталей (кроме выпрямительных диодов) можно произвести, не выпаивая их из платы. Если удалось определить неисправную деталь, то ее заменяют и приступают к проверке выполненного ремонта. Для этого на место предохранителя устанавливают лампу накаливания и включают устройство в сеть.
Здесь возможны несколько вариантов поведения отремонтированного устройства:
- Лампочка вспыхивает и притухает, загорается светодиод спящего режима, на экране появляется растр. В этой ситуации в первую очередь замеряют напряжение строчной развёртки. При его завышенной величине необходимо проверить и заменить гарантированно исправными электролитические конденсаторы. Аналогичная ситуация проявляется при неисправности оптронных пар.
- Если лампочка вспыхивает и гаснет, светодиод не загорается, растр отсутствует значит не запускается генератор импульсов. В этом случае проверяется уровень напряжения на электролитическом конденсаторе фильтра высоковольтной части. Если оно ниже 280,0…300,0 вольт, то наиболее вероятны следующие неисправности:
- пробит один из диодов выпрямительного моста;
- велика утечка конденсатор (конденсатор «состарился»).
Если напряжение отсутствует необходим повторно проверить целостность цепей питания и всех диодов выпрямителя высокого напряжения.
Вышеперечисленная последовательность и схема проверки позволяют выявить основные неисправности питающего устройства телевизионного приемника.
Ремонт питающего устройства настольного компьютера
Сегодня наибольшее распространение для питания настольных (десктопных) конструкторов получили устройства «АТХ» различной мощности. Поводом для их ремонта должно послужить:
- материнская плата не запускается (компьютер полностью неработоспособен);
- вентилятор охлаждения самого устройства не вращается;
- блок многократно «пытается» самозапуститься.
Перед началом ремонта устройств «АТХ» необходимо собрать нагрузочную схему (рисунок). Ремонт осуществляют в следующей последовательности:
- устройство вынимается из компьютера и с него снимается кожух;
- пылесосом и кисточкой удаляется пыль с электронных плат и поверхностей деталей;
- производится внешний осмотр электронных элементов и печатных плат;
- подключается нагрузочное устройство.
Если при включении лампа ярко вспыхивает и продолжает гореть, значит из строя вышел диодный мост в высоковольтной части или фильтрующий конденсатор. Возможно перегорание высоковольтного трансформатора.
Если предохранитель цел, то причиной неработоспособности может быть:
- выход из строя транзисторов генератора импульсов;
- неисправность ШИМ-контроллера.
В этих случаях проще приобрести новое устройство, которое в зависимости от мощности, стоит от 600…800 рублей.
При многократном самозапуске устройства причиной неработоспособности обычно является вход из строя стабилизатора опорного напряжения. При этом система компьютера не может пройти режим самотестирования отключает и включает модуль питания.
PhiX › Блог › РЕМОНТ КОМПЬЮТЕРНЫХ БЛОКОВ ПИТАНИЯ
В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.
Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.
Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.
Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.
Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.
Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.
Немного о том, что мы увидим, вскрыв блок питания.
Внутреннее изображение блока питания системы ATX
A – диодный мост, служит для преобразования переменного тока в постоянный
B – силовые конденсаторы, служат для сглаживания входного напряжения
Между B и C – радиатор, на котором расположены силовые ключи
C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки
между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений
D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе
E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе
Распиновка разъема 24 pin и измерение напряжений.
Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.
Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.
Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.
Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.
Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.
Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.
БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.
Диагностика импульсного блока питания. Часть I, используемые определения
Мы уже рассматривали классический вариант диагностики импульсного блока питания некоторые моменты мы сознательно опустили, для более простой подачи материала. Практика показала, что у части специалистов возникают вопросы даже после ознакомления с публикацией, постараемся исправить этот пробел. Материал является самостоятельным и строго ориентирован на ремонт блока питания с ШИМ UC3843 (3842,3844,3845). В качестве примера будем рассматривать уже рассмотренный блок питания D-Link JTA0302D-E (5В*2А) выполненного на ШИМ 3843 в виду его классического исполнения.
Хотя часть ремонтируемых блоков питания не имеют родных схем, большинство ремонтов блоков питания на ШИМ 3843 (3842,3844,3845) мы выполняем по нижеприведенной принципиальной электрической схеме.
Схема блока питания D-Link JTA0302D-E (5В*2А), такая схемотехника характерна для канонических вариантов схем.
Подобная схема хоть и не соответствует стандартам, но максимально приближена к каноническому варианту исполнения принципиальных электрических схем. Некоторые признаки указывают, что схема была срисована с уже готового блока питания, а значит так ее видит автор. Если бы эту схему рисовали мы, то получился бы несколько другой вариант, по которому проще ремонтировать, схема от немного другого блока питания, несколько сумбурно прорисованы цепи обратной связи, холодная и горячая земля, но все же по ней проще делать диагностику.
Схема блока питания D-Link 5В*2А, такая схемотехника характерна для наглядных пособий по ремонту.
Отличие этих двух схем в элементной базе небольшие, но есть серьёзные различия в исполнении, если первая схема ориентирована на ГОСТ, то вторая схема нарисована специалистом ранее ремонтировавшим подобный блок питания.
Так как материал рассчитан на специалиста, редко занимающегося ремонтом импульсных блоков питания, то поиск по сопутствующим ресурсам или ответы от более опытных коллег, иногда ставят в тупик, вместо того чтобы помочь в решении проблемы. Такое происходит от специфики терминологии используемой в среде специалистов при ремонте блоков питания. Стоит отметить терминология может меняться от региона к региону, например грифлик может называться снаббером, а пусковой конденсатор – конденсатором первого удара.
Схема блока питания D-Link 5В*2А, с небольшими корректировками, для удобства чтения.
Структурная блок схема блока питания D-Link 5В*2А
Что бы не было неоднозначности, конкретно пропишем каждые элементы блок схемы, функционал и особенности диагностики рассмотрим позже.
Предохранитель F1 (2.25А) тут возможно опечатка или неудачное сокращение, скорее всего имеется ввиду 2А*250В, по функционалу – не занимается фильтрацией, но мы его отнесли к цепям входного фильтра
Терморезистор TR(5 Ом) необходим для «мягкого пуска» блока питания в момент включения и хотя по функционалу – не занимается фильтрацией, мы его отнесли к цепям входного фильтра.
Х-конденсатор XC1 (100 pF*250B), тут стоит обратить внимание – это X конденсатор.
Дроссель L1 – как правило это проволочный дроссель на феррите (не пермаллой), выполненный в виде трансформатора.
Диодный мост DB1-DB4(1N4007)
Конденсатор входного выпрямителя С1(33мкф*400В)
T1.1 Высоковольтная (первичная) обмотка
T1.2 Обмотка для питания ШИМ
T1.3 Низковольтная (вторичная) обмотка
Резистор R1(39кОм) редко бывает в планарном исполнении, так как на нем рассеивается значительная мощность
Конденсатор С2(4700 пФ*2кВ) использование низковольтного конденсатора в этой цепи недопустимо.
Быстродействующий диод VD1(PS1010R) – не смотря на рабочее напряжение конденсатора 2кВ, рабочее напряжение этого диода обычно 1кВ, при хорошем токе в 1А.
Диод Шотки VD5-VD6 (SB340) использование диодов Шотки позволяет на малых мощностях обойтись без дополнительных элементов охлаждения.
Конденсаторы LowESR C9, C10 (680 мкФ*10В) использование обычных конденсаторов допустимо, но резко снижает ресурс блока питания, так как эти конденсаторы работают в очень жестком режиме.
Дроссель L2 выполняет двойную функцию является накопителем для конденсатора С20, а так же является элементом фильтра.
Конденсатор С20 (220мкФ*10В) – благодаря дросселю L2 работает в нормальном режиме и особых требований, кроме массогабаритных показателей, к этому конденсатору не предъявляется.
Резистор R21(220 Ом) – формально не является элементом выходного выпрямителя, а служит для быстрого разряда С9,С10, С20, L2.
МОП транзистор с n-каналом VT1(P4NK60Z), полевой транзистор на работу с которым рассчитан ШИМ UC3843
Резистор R2(1.5 Ом) не смотря на то, что рассеивает значительную мощность, встречается как в планарном так и проволочном исполнении. В случае планарного исполнения набирается путем параллельного соединения нескольких планарных резисторов.
Резистор R8 (300 Ом), R3(750кОм) и С4 (10нФ) мы не хотели добавлять эти элементы в раздел токовый датчик, так как они создают некоторую путаницу в терминологии, ведь под понятием токовый датчик подразумевается именно резистор R2(1.5 Ом) и только он, но слово из песни не выкинешь, так как формально эти элементы так же являются цепями токового датчика, мы вынуждены их упомянуть, тем самым создав некоторую путаницу в терминологии токового датчика.
Резистор R4 (300кОм) не смотря на простоту один из самых сложных элементов блока питания, так именно он определяет возможные замены ШИМ на аналоги, именно он выглядит как неисправный элемент, так как он рассеивает значительные мощности, именно при замене этого резистора забывают посмотреть рабочее напряжение резистора, а ведь оно должно быть не менее 400 В, для примера, планарный резистор типоразмера 1206 имеет максимальное рабочее напряжение 250В.
T1.2 Обмотка для питания ШИМ
Резистор R9 (5.1 Ом) элемент интегрирующей цепи для гашения паразитных выбросов трансформатора, очень неоднозначный элемент – именно неудачный выбор (слишком большой номинал) этого элемента заставляет срываться блок питания на холостом ходу.
Выпрямительный диод VD2 (1N4148) – обыкновенный диод без всяких изысков.
ZD1 (BZX55C20) еще один неоднозначный элемент схемы, о нем мы поговорим попозже и рассмотрим подробнее, на данном этапе лишь укажем его характеристики 20В, 5 мА. Отметим только тот факт, что он доставляет много проблем начинающим ремонтникам.
Конденсатор С6 (47мкФ*25В) – без преувеличения можно назвать основным элементом импульсного блока питания. Косвенно, как только механик начинает видеть этот конденсатор только посмотрев на блок питания, можно говорить о квалификации этого ремонтника. Отметим – этот элемент всегда подлежит замене при любом ремонте импульсного блока питания, пренебрежение этой рекомендацией превращает ремонт в борьбу с ветряными мельницами.
U2(UC3843) – не нуждается представлении, отметим только это самый простой в реализации и надежный в эксплуатации ШИМ для своего времени.
Резистор R5(150 Ом), рассматриваемая схема самый неудачный пример для рассматривания драйвера силового ключа, так как большинстве своем, драйвер имеет радикальное отличие от рассматриваемого, обычно это резистор номиналом 15-30 Ом.
Резистор R11(3кОм) и конденсатор С5(10нФ) задают частоту генерации.
Делитель на резисторах R22(5.25кОм) и R23(4.87 кОм)
Токоограничивающий резистор R17(470 Ом)
Оптопара гальванической развязки U1.1, U1.2
Регулируемый стабилитрон U3(KA431AZ)
Элементы коррекции цепи обратной связи конденсаторы С12 (1мкФ*50В), С3(10нФ)
Отдельно стоит отметить помехоподавляющий Y конденсатор YC2(2200пФ), но не столько из за его функционала, сколько благодаря ему можно (и нужно) отличать «горячую» и «холодную» землю.
Диагностика импульсного блока питания. Часть I, используемые определения
Мы уже рассматривали классический вариант диагностики импульсного блока питания некоторые моменты мы сознательно опустили, для более простой подачи материала. Практика показала, что у части специалистов возникают вопросы даже после ознакомления с публикацией, постараемся исправить этот пробел. Материал является самостоятельным и строго ориентирован на ремонт блока питания с ШИМ UC3843 (3842,3844,3845). В качестве примера будем рассматривать уже рассмотренный блок питания D-Link JTA0302D-E (5В*2А) выполненного на ШИМ 3843 в виду его классического исполнения.
Хотя часть ремонтируемых блоков питания не имеют родных схем, большинство ремонтов блоков питания на ШИМ 3843 (3842,3844,3845) мы выполняем по нижеприведенной принципиальной электрической схеме.
Схема блока питания D-Link JTA0302D-E (5В*2А), такая схемотехника характерна для канонических вариантов схем.
Подобная схема хоть и не соответствует стандартам, но максимально приближена к каноническому варианту исполнения принципиальных электрических схем. Некоторые признаки указывают, что схема была срисована с уже готового блока питания, а значит так ее видит автор. Если бы эту схему рисовали мы, то получился бы несколько другой вариант, по которому проще ремонтировать, схема от немного другого блока питания, несколько сумбурно прорисованы цепи обратной связи, холодная и горячая земля, но все же по ней проще делать диагностику.
Схема блока питания D-Link 5В*2А, такая схемотехника характерна для наглядных пособий по ремонту.
Отличие этих двух схем в элементной базе небольшие, но есть серьёзные различия в исполнении, если первая схема ориентирована на ГОСТ, то вторая схема нарисована специалистом ранее ремонтировавшим подобный блок питания.
Так как материал рассчитан на специалиста, редко занимающегося ремонтом импульсных блоков питания, то поиск по сопутствующим ресурсам или ответы от более опытных коллег, иногда ставят в тупик, вместо того чтобы помочь в решении проблемы. Такое происходит от специфики терминологии используемой в среде специалистов при ремонте блоков питания. Стоит отметить терминология может меняться от региона к региону, например грифлик может называться снаббером, а пусковой конденсатор – конденсатором первого удара.
Схема блока питания D-Link 5В*2А, с небольшими корректировками, для удобства чтения.
Структурная блок схема блока питания D-Link 5В*2А
Что бы не было неоднозначности, конкретно пропишем каждые элементы блок схемы, функционал и особенности диагностики рассмотрим позже.
Предохранитель F1 (2.25А) тут возможно опечатка или неудачное сокращение, скорее всего имеется ввиду 2А*250В, по функционалу – не занимается фильтрацией, но мы его отнесли к цепям входного фильтра
Терморезистор TR(5 Ом) необходим для «мягкого пуска» блока питания в момент включения и хотя по функционалу – не занимается фильтрацией, мы его отнесли к цепям входного фильтра.
Х-конденсатор XC1 (100 pF*250B), тут стоит обратить внимание – это X конденсатор.
Дроссель L1 – как правило это проволочный дроссель на феррите (не пермаллой), выполненный в виде трансформатора.
Диодный мост DB1-DB4(1N4007)
Конденсатор входного выпрямителя С1(33мкф*400В)
T1.1 Высоковольтная (первичная) обмотка
T1.2 Обмотка для питания ШИМ
T1.3 Низковольтная (вторичная) обмотка
Резистор R1(39кОм) редко бывает в планарном исполнении, так как на нем рассеивается значительная мощность
Конденсатор С2(4700 пФ*2кВ) использование низковольтного конденсатора в этой цепи недопустимо.
Быстродействующий диод VD1(PS1010R) – не смотря на рабочее напряжение конденсатора 2кВ, рабочее напряжение этого диода обычно 1кВ, при хорошем токе в 1А.
Диод Шотки VD5-VD6 (SB340) использование диодов Шотки позволяет на малых мощностях обойтись без дополнительных элементов охлаждения.
Конденсаторы LowESR C9, C10 (680 мкФ*10В) использование обычных конденсаторов допустимо, но резко снижает ресурс блока питания, так как эти конденсаторы работают в очень жестком режиме.
Дроссель L2 выполняет двойную функцию является накопителем для конденсатора С20, а так же является элементом фильтра.
Конденсатор С20 (220мкФ*10В) – благодаря дросселю L2 работает в нормальном режиме и особых требований, кроме массогабаритных показателей, к этому конденсатору не предъявляется.
Резистор R21(220 Ом) – формально не является элементом выходного выпрямителя, а служит для быстрого разряда С9,С10, С20, L2.
МОП транзистор с n-каналом VT1(P4NK60Z), полевой транзистор на работу с которым рассчитан ШИМ UC3843
Резистор R2(1.5 Ом) не смотря на то, что рассеивает значительную мощность, встречается как в планарном так и проволочном исполнении. В случае планарного исполнения набирается путем параллельного соединения нескольких планарных резисторов.
Резистор R8 (300 Ом), R3(750кОм) и С4 (10нФ) мы не хотели добавлять эти элементы в раздел токовый датчик, так как они создают некоторую путаницу в терминологии, ведь под понятием токовый датчик подразумевается именно резистор R2(1.5 Ом) и только он, но слово из песни не выкинешь, так как формально эти элементы так же являются цепями токового датчика, мы вынуждены их упомянуть, тем самым создав некоторую путаницу в терминологии токового датчика.
Резистор R4 (300кОм) не смотря на простоту один из самых сложных элементов блока питания, так именно он определяет возможные замены ШИМ на аналоги, именно он выглядит как неисправный элемент, так как он рассеивает значительные мощности, именно при замене этого резистора забывают посмотреть рабочее напряжение резистора, а ведь оно должно быть не менее 400 В, для примера, планарный резистор типоразмера 1206 имеет максимальное рабочее напряжение 250В.
T1.2 Обмотка для питания ШИМ
Резистор R9 (5.1 Ом) элемент интегрирующей цепи для гашения паразитных выбросов трансформатора, очень неоднозначный элемент – именно неудачный выбор (слишком большой номинал) этого элемента заставляет срываться блок питания на холостом ходу.
Выпрямительный диод VD2 (1N4148) – обыкновенный диод без всяких изысков.
ZD1 (BZX55C20) еще один неоднозначный элемент схемы, о нем мы поговорим попозже и рассмотрим подробнее, на данном этапе лишь укажем его характеристики 20В, 5 мА. Отметим только тот факт, что он доставляет много проблем начинающим ремонтникам.
Конденсатор С6 (47мкФ*25В) – без преувеличения можно назвать основным элементом импульсного блока питания. Косвенно, как только механик начинает видеть этот конденсатор только посмотрев на блок питания, можно говорить о квалификации этого ремонтника. Отметим – этот элемент всегда подлежит замене при любом ремонте импульсного блока питания, пренебрежение этой рекомендацией превращает ремонт в борьбу с ветряными мельницами.
U2(UC3843) – не нуждается представлении, отметим только это самый простой в реализации и надежный в эксплуатации ШИМ для своего времени.
Резистор R5(150 Ом), рассматриваемая схема самый неудачный пример для рассматривания драйвера силового ключа, так как большинстве своем, драйвер имеет радикальное отличие от рассматриваемого, обычно это резистор номиналом 15-30 Ом.
Резистор R11(3кОм) и конденсатор С5(10нФ) задают частоту генерации.
Делитель на резисторах R22(5.25кОм) и R23(4.87 кОм)
Токоограничивающий резистор R17(470 Ом)
Оптопара гальванической развязки U1.1, U1.2
Регулируемый стабилитрон U3(KA431AZ)
Элементы коррекции цепи обратной связи конденсаторы С12 (1мкФ*50В), С3(10нФ)
Отдельно стоит отметить помехоподавляющий Y конденсатор YC2(2200пФ), но не столько из за его функционала, сколько благодаря ему можно (и нужно) отличать «горячую» и «холодную» землю.